
ARTMENTS
Firmware Furnace

From the Bench

Silicon Update

Embedded Techniques

ConnecTime

Ed Nisley

Journey to the Protected Land:
The Mystery of Scan
Code Set 3

looked at one of
your old projects and

asked, “Who wrote this

ave you ever

code and what was I thinking?” I know
I have! Sometimes you can replace a
page of tortured logic with a single,
obvious, crystal-clear function.. .that
is, until you look at it again in a few
years.

Last month, you saw how the PC’s
keyboard evolved from a fairly simple
subsystem into a complex mess. Each
change made sense at the time, but the
end result is essentially incomprehen-
sible. Imagine designing a system that
produces eight bytes for a single key.

This month, 1’11 examine the
keyboard hardware and firmware built
into every PC. Protected mode gives us
the opportunity to switch the key-
board’s fundamental operation into
something sensible. As you’ll see,
talking to the keyboard exercises some
interesting machinery.

Crystal clear? Check it again next
year!

CONTROLLING THE
CONTROLLER

The keyboard controller on the
system board is an 8042 Universal
Peripheral Interface, also known as a
microcontroller. It’s generally easy to
spot since a 40-pin DIP looks terribly
out of place on a system board where

74 Issue #60 July 1995 Circuit Cellar INK

System
data bus

I/O address
bit A2 I

l+-rl+Input i System
Pop status

l--a Systemoutput 1 controls

Port !
IRQl

tt

TO i
Tl ! Keyboard

~________________________________~____~
8042 Universal Peripheral Interface

L
Figure l--The system board keyboard controller is an 8042 microcontroller interfaced to the main CPU through a
pair of byte-wide I/O ports at addresses 60 and 64. Port 64 sends commands to the controller and returns status
bits; the values read and wriffen are not identical. Porf 60 is a bidirectional data port. The 8042 hand/es the
keyboard’s serial data format and serves as an interface to the system board’s status and control bits.

three or four surface-mount LSI parts
hold several million logic transistors.
Current systems sport genetically
engineered 8042 descendants stuffed
with specialized speed-up hardware.

A great deal of weirdness sur-
rounding the keyboard controller goes
away as you read the Intel 8042 data
sheet. Figure 1 sketches the key
features. As you can see, all the logic is
inside the 8042! The main system’s
only access is through two I/O ports at
addresses 60 and 64 (hex) and the
output driving IRQ 1.

hardware flags shown in Listing 1.
Internal hardwired logic sets Status
Register bit 0, the OBF flag, when the
8042 firmware writes a byte into the
Output Buffer and clears it when the
‘386SX reads the byte.

Reading port 60 selects the 8042
Output Buffer through which the
controller sends keyboard scan codes
and other information to the ‘386SX.
Reading port 64 selects the 8042 Status
Register, which contains the five
firmware-controlled bits and three

The 8042 firmware controls an
internal gate that routes OBF to the
pin driving IRQ 1. Each time the
firmware writes a byte into the Output
Buffer, IRQ 1 goes high and the ‘386SX
CPU executes the IRQ 1 interrupt
handler. You can enable and disable
this interrupt in three places: the 8042,
the 8259, and the CPU’s Interrupt Flag.

Writing a byte to either port 60 or
port 64 loads the 8042 Input Buffer and
sets Status Register bit 1, the IBF flag.
Hardwired logic also copies I/O
address bit 2 into Status Register bit 3
on each write, giving the firmware an

Listing l--You may read the keyboard controller status byte from port 64 at any time. The 8042 sets
Output Fu I 7 whenever a byte is available at port 60. This flag also triggers IRQ 1 if interrupts are
enabled. The hardware sets Input Fu 7 7 immediately after each write to port 60 or 64, indicating that the
firmware has notyetprocessed the byte. The controllersets Par i tyError, RecTimeou t, and
Tr a n s Time o u t after performing several retries on its own.

RECORD STATFLAGS {
StatFlag_ParityError:l ; kbd serial parity error
StatFlag_RecTimeout:l ; timeout during kbd message
StatFlaggTransTimeout:l ; timeout after ctl message
StatFlaggNoKeylock:l ; 0 = keylock switch ON
StatFlag_CmdReceived:l ; 1 = last write to Port 64
StatFlag_SysFlag:l ; keyboard OK or SysFlag = 1
StatFlag_InputFull:l : 1 = no write to 60/64
StatFlag_OutputFull:l ; 1 = read data from 60

easy way to distinguish the two
sources. IBF goes low when the 8042
firmware reads the Input Buffer.

The keyboard controller firmware
accepts data through port 60 and com-
mands through port 64. Although the
‘386SX CPU writes to two separate
ports, they neck down to a single
chunk of 8042 hardware. You must
verify that IBF is low before writing to
either port, lest you overwrite a previ-
ous value before the 8042 has read it.

With that hardware background in
mind, the keyboard controller should
make more sense. The 8042 firmware
recognizes about 120 commands
written to port 64, most of which are
entirely irrelevant for normal opera-
tion. Listing 2 shows the few com-
mands used by the FFTS keyboard
interface.

The terminology doesn’t help
much. The ‘386SX writes these
commands to port 64. One of the
commands, 60 hex, is Write Com-
mand Byte. The Command Byte,
shown in Listing 3, is subsequently
written to port 60. The only way to get
familiar with this stuff is to use it.

Bit 6 of the Command Byte,
T r a n s 1 ate, determines whether the
controller translates raw keyboard
scan codes into system scan codes.
This bit is normally on because the
keyboard defaults to Scan Code Set 2,
the baroque multibyte scheme I
described last month. When T r a n s -
1 ate is zero, the controller passes the
keyboard’s scan codes directly to port
60 without modification. As I’ll
discuss later, turning this bit off is
essential for the FFTS interface.

Whenbit4, DisableKbd,ison,
the 8042 firmware forces the keyboard
clock line low to prevent the keyboard
from sending anything to the control-
ler. Normally, your set-up routine
turns this bit on and your operating
code uses the Enable and Disable
Keyboard commands to flip the bit,
thus eliminating the need to write a
new Command Byte.

SettingbitO, EnableInt,on
enables the IRQ 1 interrupt whenever
the OBF bit goes on. The hardware
doesn’t care why the Output Buffer
became full; OBF goes on whenever
the 8042 firmware writes a byte

Circuit Cellar INK Issue #60 July 1995 75

whether it’s a scan code or a response
to a command. You must ensure that
your keyboard interrupt handler is
never surprised by a byte that isn’t a
keyboard scan code.

The three routines shown in
Listing 4 handle low-level system
keyboard controller I/O. I have
omitted statements that generate the
tracing and debugging messages you’ll
see later.

KEYBOARD CONVERSATIONS
Notwithstanding the preceding

discussion, the system keyboard
controller’s main purpose in life is
converting between keyboard serial
data and PC parallel data. Generally,
our code talks directly through the
keyboard controller to the keyboard
itself, so we must know what the
microcontroller under the keycaps
expects to hear.

Unless the system keyboard
controller is busy processing a com-
mand written to port 64, it simply
passes data written to port 60 directly
to the keyboard in serial form. The IBF
flag indicates that the data previously
written to either port 60 or 64 hasn’t
been processed yet. Listing 4b takes
care of this with the same code that
writes data to the Input Buffer after a
system-keyboard-controller command.

Similarly, the controller converts
any data arriving from the keyboard to
parallel form and places it in the Out-
put Buffer register, triggering IRQ 1 if
interrupts are enabled. Reading port 60
extracts the data, resets OBF, and
clears IRQ 1. The controller disables
the keyboard while OBF is set, elimi-
nating the possibility of an overrun.

Listing 4c reads Output Buffer
bytes without regard to where they
came from and thus returns bytes from
the keyboard as well as the system
keyboard controller. This code is
useful only after commands producing
a response byte because the normal
keyboard scan codes should go to the
IRQ 1 interrupt handler.

Serial data flows between the
system keyboard controller and the
keyboard at a peak rate of about 10
kbps (see Photo 1, FF, INK 59). The
average data rate is much lower,
limited mainly by delays between the

76 Issue #60 July 1995 Circuit Cellar INK

Listing 2--Most of the keyboard controller commands are not useful during normal operation. The FFTS
routines use fhese few commands. Listing 3 shows the bits in the Command Byte.

CCRD_RDCMD = 020h ; read controller command
CCMDDWRCMD = 060h ; write controller command
CCMDDTEST = OAAh ; test controller
CCMDDDISABLE = OADh ; disable keyboard
CCMDDENABLE = OAEh ; enable keyboard
CCMDDSYSRESET = OFEh ; reset the entire system!

bytes-even the fastest typists have
trouble generating a few hundred
keystrokes per second. I’d say the link
is fast enough.

The communications protocol’s
details aren’t of much use to us right
now. Suffice it to say that when the
system keyboard controller lowers the
clock line, the keyboard cannot
transmit information and stores
keystrokes in its internal buffer. You
must disable the keyboard using the
system keyboard controller Disable
Keyboard command (AD hex) before
issuing any commands using the Input
or Output Buffers. If the keyboard
remains enabled, it may send a byte
that arrives just after your command
and confuse the proceedings.

Listing 5 shows how to send a
byte to the keyboard and process the
acknowledgment. I suspect the only
proper response to an error that makes
it past the system keyboard
controller’s retries is “Your keyboard
just died.” In this routine, I simply
ignore persistent errors and continue
without complaint.

The keyboard recognizes about a
dozen commands, many of which
aren’t relevant to our purposes. Listing
6 shows the few we’ll need for the
FFTS routines.

Now onto the fun part!

CONVERTING THE CODES

The keyboard sends an acknowl-
edgment for every byte it receives from
the system. If the byte had good parity
and timing the keyboard sends FA hex
(pronounced “Ack”). Most errors
results in FE hex [say “Error”). Merci-
fully, the system keyboard controller
handles error conditions by resending
the byte several times before setting
the Status Register error bits.

The complexity of deciphering all
the scan codes produced in all the shift
states for all the keys seemed too
daunting when I first looked into this
topic. Frankly, writing a replacement
BIOS keyboard handler wasn’t some-
thing I wanted to tackle!

When faced with an impossible
situation, sometimes you can restate
the problem so the solution is obvious.
In this case, a light went on when I
read that PSI2 and some other key-

Listing 3-This Command ByIe defines fhe controller’s overa// operating mode. If the system includes a F’S/
P-style system-board mouse port, several of the Command Byfe bits have different meanings. The B/OS
sets Tr a n s 1 a t e, Sys f 1 a g, and En a b 1 e In t affer each system reset. The FFTS keyboard routine
turns Jr an s 7 a t e off to gain direct access fo the keyboard’s scan codes.

RECORD CTLFLAGS (
CtlFlag_Res7:1=0 ; reserved, must be 0
CtlFlag_Translate:l=l ; translate AT to PC
CtlFlag_PCMode:l=O ; use PC serial intf
CtlFlag_DisableKbd:l=O ; force kbd clock low
CtlFlag_DisableInhibit:l=O ; override keylock
CtlFlag_SysFlag:l=l ; 1 after BIOS setup
CtlFlag_Resl:l=O ; reserved, must be 0
CtlFlag_EnableInt:l=O ; enable IRQ 1 interrupt

CMD_NORMAL = (MASK CtlFlaggSysFlag) + MASK CtlFlaggEnableInt

Listing 4-a) The KeySen dCmd routine waifs until the 8042 Input Buffer Full flag is clear, #hen writes the
command to porf 64. b) KeySendDa ta waifs until both the Input and Oufpuf Buffer flags are c/ear, fhen
writes the data byfe to port 60. Any scan codes arriving before Key F I us h Ou t p u t are lost. c) The
Key Red dDa t a routine polls the Status Register until the Output Buffer flag goes high, then reads the
byte. The keyboard inferrupt handler snags the byte firsf unless you disable IRQI.

4
PROC
ARG
USES

CALL KeyWaitInBuff

MOV
OUT

RET
ENDP

4
PROC
ARG
USES

CALL KeyWaitInBuff
CALL KeyFlushOutput

MOV
OUT

RET
ENDP

KeySendCmd
CmdByte:DWORD
EAX

EAX,[CmdBytel
KEY_CMD,AL

KeySendCmd

KeySendData
DataByte:DWORD
EAX,ECX

EAX,[DataByte]
KEYpDATA,AL

c)
PROC
USES

MOV

@Stall:
IN
TEST
JNZ

CallSys
LOOP

@Fetch:
IN
Punt
MOVZX
MOV

RET
ENDP

KeySendData

KeyReadData
ECX

ECX,MAX_DATAWAIl

AL,KEY_STATUS

; wait for prev cmd to finish

; fetch the command
: send it out

; wait for cmd to clear
; discard any pending bytes

; fetch the data
; send it out

; maximum delay

; key ready yet?
AL,MASK StatFlag_OutputFull
@Fetch

CGT-TMR_DELAYMS,l ; nope, wait a bit
@@Stall ; and try again

AL,KEY_DATA ; fetch the data

EAX,AL clean up the byte
ILastCodel,EAX i and save for examination

KeyReadData

boards supported three scan-code sets,
one of which produced a single byte
per keystroke. I knew a bit about why
Scan Code Set 3 existed, a tale told
here last month. The only remaining
question was how many clone key-
boards supported that feature.

Rick Freeman and the folks at
Computer Options here in Raleigh
graciously loaned me one of every

keyboard in the store. Adding those to
my ragtag collection, I checked out a
dozen Enhanced keyboards and found
that, with a single exception, they all
supported Scan Code Set 3. The
oddball, a Northgate C/T keyboard,
dates back to 1988 when Enhanced
keyboards were very, very new.

While that’s not conclusive proof
that all PC keyboards respond cor-

FREE
Data Acquisition
Catalog

ta

acquisition catalog

from the inventors of

plug-in data acquisition.

Featuring new low-cost

A/D boards optimized

for Windows,

DSP Data Acquisition,

and the latest

Windows software.

Plus, informative

technical tips and

application notes.

Call for your free copy

l-800-648-6589

ADAC
American Data Acquisition Corporation
70 Tower Office Park, Woburn, MA 01801
phone 617-935-3200 fax 617-938-6553

#117
Circuit Cellar INK issue #60 July 1995 7 7

rectly to the code in FFTS, it gave me
enough confidence to try this trick.
I’m interested in hearing how this
works out on your system. But, if your
keyboard doesn’t support Scan Code
Set 3, you get to decode its output. I

want no part of Scan Code Set 2, thank
you very much.

The code in Listing 7 handles the
transition from the BIOS default
keyboard settings to the new condi-
tions. It runs the self-test routines in
the system keyboard controller, and
the keyboard then sends several
commands to the keyboard. If any of
the first few commands fail because of
a missing keyboard or missing feature,
the keyboard is disabled and unusable
in FFTS.

I always set my keyboards for the
shortest typematic delay (250 ms) and
the fastest repeat rate (30 characters
per second). Recognizing that your
reflexes may vary, I’ve declared a group
of constants that go all the way to
stun: two characters per second after a
one second delay.

Scan Code Sets 1 and 2 automati-
cally set all keys to typematic-make-
break mode, leaving the BIOS to sort
out the superfluous make codes. Scan
Code Set 3 works differently, placing
only the typewriter and cursor keys in
typematic mode. Most of the remain-
der are make-only keys that send a
single code when they’re pressed, do
not repeat no matter how long they’re
down, and do not send a break code
when they’re released.

Most of the shift keys operate in
make-break fashion, sending only a
single make code and a single break
code. Oddly enough, the right-Ah and
right-Ctrl keys are make-only, which
is sensible when you see the main-
frame and minicomputer keyboard
keycaps: one is an Enter key and the
other does something similar. Remem-
ber, PCs aren’t the only computers in
the world!

The good news is that you can
reprogram the key modes to suit your
needs. A single command sets all the
keys to the familiar typematic-make-
break mode used in the other Scan
Code Sets. This mode is appropriate
for typewriter keys, cursor keys, and a
few others, eliminating the need to

78 Issue #60 July 1995 Circuit Cellar INK

Listing 5-The keyboard acknowledges each byle if receives with either FA hex (good) or FE hex (error).
This routine resends the byfe a few times and then simp/y ignores the error. You must disable the keyboard
before calling this routine to ensure that Key F I us h Ou tpu t doesn’t inadvertent/y discard a keystroke.

PROC KeySendDataAck
ARG DataByte:DWORD
USES ECX

MOV ECX,MAX_RETRIES

@Resend:
CALL KeyWaitInBuff
CALL KeyFlushOutput

retry counter

wait for cmd to clear
discard any pending bytes

MOV EAX,CDataBytel ; fetch the data
OUT KEY_DATA,AL ; send it out

CALL KeyReadData : fetch byte
MOVZX EAX,AL : clean it up
CMP AL,KRSP_ACK ; ack?
JE @Done ; yes, done
CMP AL.KRSP_RESEND ; resend?
JNE @@Done : no. ignore it
LOOP @Resend ; yes, try again

@@Done:
RET
ENDP KeySendDataAck

reprogram each and every key indi- is no need to process and discard
vidually. additional make codes.

Three additional commands set
individual keys to make-only, make-
break-only, or typematic-only mode.
The key’s make scan code follows the
command byte, which means you
must program each key individually.
The keyboard accepts these commands
when any Scan Code Set is active, but
they apply only to Scan Code Set 3.

The most useful function keys in
make-only mode are Esc, Ins, Home,
and End. These keys produce a single
scan code that triggers a single action.
Again, not having to deal with re-
peated keys simplifies programming.

Some applications can probably
take advantage of typematic-only
function keys that send repeated make
codes with no break code at the end.
All the FFTS definitions reside in a
table, making it easy to contort the
keyboard to suit your needs.

The make-break mode is a natural
for shift and lock keys as the make
code indicates that the key is down
and the break code says it’s up. There

Listing 5-The keyboard responds to a varie& of commands sent through fhe system keyboard controller.
Some systems include an onboard mouse port driven by the system keyboard controller; the mouse
controller responds to a slightly different command set. This list includes the most useful keyboard
commands.

KCMD_WRLEDS = OEDh ; write to keyboard LEDs
KCMD_CODEMODE = OFOh ; get/set scan code mode
KCMD_RDID = OFZh ; read keyboard ID
KCMD_RATE = OF3h ; set typematic delay & rate
KCMD_ENABLE = OF4h ; enable keyboard
KCMD_ALL_TMB = OFAh ; all keys typematic/make/break
KCMD_ONE_T = OFBh ; set single key to typematic
KCMD_ONE_MB = OFCh ; set single key to make-break
KCMD_ONE_M = OFDh : set single key to make-only
KCMD_RESET = OFFh ; reset to power-on defaults

Listing I-The protected-mode FFTS keyboard interface uses Scan Code Set 3 because if’s much easier to
process than the PC default, Scan Code Sef 2. This routine tests the system keyboard controller and the
keyboard, sets the keyboard’s new operating modes, and prepares the interrupt handler. If the keyboard isn’t
present or doesn’t support Scan Code Set 3, the code disp/ays a message and doesn’f enable the keyboard.

MOV [KeyEnablel,l

CALL KeySendCmd,CCMD_TEST
CALL KeyReadData
CMP AL.055h
JE @CtlOK

@KbdNG:
MOV IKeyEnablel.0
CALL ConfSendString,CON_SERIAL, \

GDT_CONST,OFFSET cMsg_KbdNG
JMP @@Done

@@CtlOK:
CALL KeySendCmd,CCMO_DISABLE
CALL KeyFlushOutput

assume OK..

test controller
fetch result code
is it OK?

keyboard failure!

disable keyboard
discard pending codes

CALL KeySendDataAck.KCMD_RESET
CMP AL,KRSP_ACK
JNE @KbdNG
CALL KeyReadData
CMP AL,OAAh
JNE @KbdNG

CALL KeySendDataAck,KCMD_RATE
CMP AL,KRSP_ACK
JNE @KbdNG
CALL KeySendDataAck,DELAY_Z50 + RATE-30 i

CALL KeySendDataAck,OFOh
CALL KeySendDataAck,003h
CMP AL,KRSP_ACK
JNE @@KbdNG

CALL KeySendDataAck,KCMD_ALL_TMB
CMP AL,KRSP_ACK
JNE @KbdNG

CALL KeySetTypes

reset & test keyboard
accepted byte?
nope, no keyboard

fetch result code
is it OK?
nope, bad hardware

set typematic rate
did it work?
nope, bad hardware

yup, get smokin'

select scan code...
Set 3

did it work?

all typematiclmlb
did it work?

set individual keys

CALL KeySendDataAck,KCMD_ENABLE enable key scanning

;--- install the IRQ 1 interrupt handler

CallSys CGT_MEM_SETINTGATE,I8259A_VECTOR_PM+l, \
GDT_IDT_ALIAS, \
GDT_CODE,<OFFSET KeyHandler>.ACC_INTGATE

;--- enable 8259 keyboard controller interrupt on IRQl

CallSys CGT_UTIL_UNMASKIRQ,l

;--- set numlock on, update the LEDs, and (en passant)
:--- enable the keyboard

OR [ShiftStatel,MASK KEY_SH_NUMLOCK
CALL KeyUpdateLEDs

Each of the routines called in tional messages. The self-test and key-
Listing 7 sends tracing information to board response delays differ among the
the serial port. If the keyboard can’t keyboards I’ve tested. I’ve picked
support Scan Code Set 3 or if it reports default timeouts long enough to handle
a self-test error, you’ll see a few addi- much worse than the worst I’ve seen.

CPL
DPL
EOI
FDB
FFTS
GDT
GDTR
IBF
IDT
IF
IOPL
LDT
LDTR
NT
OBF
P bit
RF
RPL
TF
TR
TSS

Current Privilege Level
Descriptor Privilege Level
End Of Interrupt (command)
Firmware Development Board
Firmware Furnace Task Switcher
Global Descriptor Table
GDT Register
Input Buffer Full
Interrupt Descriptor Table
Interrupt Flag
I/O Privilege Level
Local Descriptor Table
LDT Register
Nested Task
Output Buffer Full
Present bit (in a PM descriptor)
Resume Flag
Requestor Privilege Level
Trap Flag
Task Register
Task State Segment

The end result of all this is a
sensible keyboard-each key has a
unique, single-byte scan code. We can
surely build something interesting
from that raw material!

RELEASE NOTES
Demo Taskette 3 now displays

doublewords containing the shift state,
system scan code, and character for
each keystroke that produces a
character. The keyboard interface
routines send a torrent of tracing
information to the serial port on each
make and break code, exposing the
inner workings (and perhaps failings)
of your keyboard.

I planned to wrap up the keyboard
this month, but there’s more code than
pages. Next month, we’ll look at the
interrupt handler that queues scan
codes and the translation routines that
convert them into familiar real-mode
BIOS values. q

Ed Nisley, as Nisley Micro Engineer-
ing, makes small computers do
amazing things. He’s also a member of
Circuit Cellar INK’s engineering staff.
You may reach him at ed.nisley@
circellar.com or 74065.1363@
compuserve.com.

422 Very Useful
423 Moderately Useful
424 Not Useful

Circuit Cellar INK Issue #60 July 1995 79

